Nuclear Power

Akira OMOTO Division of Nuclear Power Department of Nuclear Energy

International Atomic Energy Agency

Other than just producing electricity, nuclear power can be used for

Global demand for portable water increase: desalination

- Most of the world's energy consumption is for heat and transportation. NE has potential to penetrate into these sectors currently served by fossil fuels (price volatility and finite supply)
- Technology development is ongoing so that nuclear energy can help chemical energy production
 - Recovery of oil from tar sand (Canada)
 - Sweetening of oil by adding hydrogen
 Coal Liquefaction (S. Africa, Australia)

Reactor types

() IAEA

- Classification by neutron energy spectrum
 - Fast neutron reactor
 - Thermal neutron reactor
- Classification by coolant
 - Gas-cooled (CO2, Helium)
 - Water-cooled (Heavy water, Light water)
 Most of commercial reactor in operation (as of today) : Water-Cooled
 - Most of commercial reactor in operation (as of today) : Water-Cooled • Liquid Metal-cooled (Sodium, Lead, Lead-Bismuth etc)

Molten salt-cooled

- Other Non-conventional concepts; Gas-core reactor, Accelerator Driven System (sub-critical)
- Classified by generation

□ Classified by size

(Small<300MWe<Medium<700MWe<Large by IAEA)

(A) IAEA

Fast neutron reactors

Long history of development

4+ out of 6 systems in Gen-IV in 2030's: fast neutron reactors for effectively use of resources and burning long-life nuclides

Russia ✓ Ope

 \checkmark

~

France ✓ Test

Tests of transmutation of long lived nuclides & use of Pu fuels at Phénix Design of 300-600 MWe Gen-V FR Prototype start operation in 2020 ✓ R&D on GCFR

- <u>Japan</u> ✓ MO MONJU restart planned for 2009 R&D for Gen-V FR Systems: better economics by advanced systems 7 and material

India

- ✓ 500 MWe Prototype FR in 2010
 ✓ Deploy 4 more 500 MWe FR
 - afterward
- China ✓ Constructing 25 MWe CEFR criticality in 2009

Operating BN-600

Constructing BN-800

Rep. of Korea ✓ Conceptual design of 600 MWe <u>USA</u>

Developing other cooled systems (Na, Pb, and Pb-Bi)

In GNEP, planning development of industry-led prototype facilities: > Advanced Burner Reactor

Trends in reactor designs for near-term deployment

- Designed considering "User requirements"
- Design considering 60 years life
- Design for maintenance online or during outage
- Design for easier & shorter construction
- Use modern technologies
- digital control, modern man-machine interface,
- Simplicity by reducing Nr. & rotating components - passive systems (gravity, natural circulation, accumulated pressure etc.)
- Build safety into the design
- increased margins
 - severe accident measures
- Complete and standardized designs with pre-licensing

() IAEA

SMR - challenges
Development of regulatory standards for innovative designs.
Claim for no-containment, no Emergency PZ due to "inherent safety"
Economic competitiveness by innovation/learning
Economic advantages of SMRs derived from

Multiple modules (common to all SMRs)
Passive safety : saving capital, O&M
Simplicity

Technology

Without onsite refueling for small reactor by use of very long life core
Institutional
non-stationary reactor

Grid-appropriate design

A IAEA

Global trend of nuclear power generation
□ Current worldwide nuclear generating capacity ✓ Commercial NPPs in Operation 438 (2008/End) ✓ Share of nuclear electricity 14-15% (2008, no statistics yet)
□ Slowdown of capacity addition since late 80's ✓ Electricity market deregulation ✓ Slow growth of electricity demand in advanced countries ✓ Public Perception
 Nuclear electricity increased due to availability increase ✓ Best practice prevailing ✓ Consolidation to those who perform best ✓ Risk-informed regulation ✓ Continued operation by life extension
Rising expectation to the role of nuclear power 1)energy supply security, 2)volatile fossil price, 3)environmen

